Qingxuan Jiangya Decoction Mitigates Renal Interstitial Fibrosis in Spontaneously Hypertensive Rats by Regulating Transforming Growth Factor-β1/Smad Signaling Pathway
نویسندگان
چکیده
Qingxuan Jiangya Decoction (QXJYD) is a traditional Chinese medicine commonly used in the clinical treatment of hypertension. Earlier studies had shown that QXJYD could inhibit the elevation of blood pressure in spontaneously hypertensive rats (SHRs) and prevent remodeling of arterial vessels. This study examines the therapeutic efficacy of QXJYD against elevated blood pressure using the SHR model, as well as the mechanisms behind its antihypertensive activity and protection against renal fibrosis. The results showed that QXJYD significantly attenuated the increase in blood pressure in SHRs and mitigated the development of renal interstitial fibrosis. In addition, QXJYD also robustly decreased the excess accumulation of extracellular matrix and attenuated the elevated expression of MMPs. The antihypertensive effects and renal protection of QXJYD were determined to be strongly associated with inhibition of TGF-β1/Smad signaling pathway.
منابع مشابه
Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats
Objective(s): The role of N-acetylcysteine (NAC) as an anti-oxidant in attenuating bleomycin-induced pulmonary fibrosis has been reported. However, its effect on parenchymal remodeling via regulating the protease-antiprotease balance is not fully defined. Therefore, the present study was designed to explore the possible role of matrix metalloproteinases (MMP), tissue i...
متن کاملModulation of IKKβ/NF-κB and TGF-β1/Smad via Fuzheng Huayu recipe involves in prevention of nutritional steatohepatitis and fibrosis in mice
Objective(s):Fuzheng Huayu recipe (FZHY) exerts significant protective effects against liver fibrosis by strengthening the body’s resistance and removing blood stasis. However, the molecular mechanisms through which FZHY affects liver fibrosis are still unclear. In this study, we examined the expression levels of factors involved in the inhibitor κB kinase-β (IKK-β)/nuclear factor-κB (NF-κB) an...
متن کاملKnockdown of elF3a inhibits collagen synthesis in renal fibroblasts via Inhibition of transforming growth factor-β1/Smad signaling pathway.
Renal fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM). The eukaryotic translation initiation factor (eIF) 3a is the largest subunit of the eIF3 complex and has been involved in pulmonary fibrosis. However, the role of eIF3a in rental fibrosis is still unclear. Therefore, in this study, we investigated the role of eIF3a in rental fibrosis ...
متن کاملRenalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways
Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral urete...
متن کاملTamoxifen ameliorates renal tubulointerstitial fibrosis by modulation of estrogen receptor α-mediated transforming growth factor-β1/Smad signaling pathway.
BACKGROUND After insult to the kidney, a renal fibrotic process is initiated with sustained inflammation, fibroblast activation and accumulation of extracellular matrix (ECM). Tamoxifen has been used as an anti-estrogen for the prevention and treatment of breast cancer. In this study, we investigated the protective effects of tamoxifen on unilateral ureteral obstruction (UUO)-induced renal tubu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017